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ABSTRACT: Stormwater runoff is now a major contributor to the

pollution of coastal waters in the United States. Public agencies are

responding by requiring stormwater monitoring to satisfy the National

Pollutant Discharge Elimination System stormwater permit. However,

studies to understand the utility of the current programs or to improve their

usefulness have not yet been performed. In this paper, we evaluate the land-

use-based program, the industrial stormwater permit program, and beach

water-quality monitoring in the County of Los Angeles, California, to

determine if the results will be helpful to planners and regulators in abating

stormwater pollution. The utility of the program has been assessed based on

the programs’ ability to accurately estimate the emissions for different

classes of land use. The land-use program appears successful, while the

industrial monitoring program does not. Beach water-quality monitoring

suffers from a lack of real-time monitoring techniques. We also provide

suggested improvements, such as sampling method and time, and parameter

selection. Water Environ. Res., 77, 000 (2005).
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Introduction
California coastal waters are important recreational and economic

resources, which make the safety of coastal waters of concern to

both state and county health departments and beachgoers (Jiang et

al., 2001). The completion of wastewater treatment plants mandated

by the Clean Water Act has reduced conventional water pollution to

California’s beaches and bays. As a result, non-point-source pollu-

tion, such as stormwater runoff, is now a major contributor to the

pollution of the coastal water, including Santa Monica Bay, which

is among the most severely polluted bays in the United States

(Wong et al., 1997). The problem of stormwater pollution is

becoming worse because of population growth, which results in

increased impermeable area. Storm drains entering the ocean are a

main cause of permanent beach postings at many California beaches

(State Water Resources Control Board, 2001).

Public agencies are responding by requiring stormwater moni-

toring to satisfy the National Pollutant Discharge Elimination

System (NPDES) stormwater permit as authorized by the Clean

Water Act. For example, the Los Angeles County Department of

Public Works (LACDPW) has been monitoring stormwater under

the 1990 NPDES municipal permit (No. CA0061654), and later the

1996 municipal permit (No. CAS614001), since the 1994–1995 wet

season. Additional sampling is required by other agencies, such as

the City of Los Angeles and the California Department of

Transportation. Similar programs are underway in other areas of

California and the United States.

The existence of stormwater-monitoring programs should repre-

sent progress towards achieving clean-water goals; however, studies

have not yet been performed to understand the utility of the current

programs or to improve their usefulness. In this paper, we evaluate

several monitoring programs to determine if the results will be

helpful to planners and regulators in abating stormwater pollution.

Datasets from a major municipal program, beach monitoring, a large

self-monitoring program, and a research project were used. The

results suggest that parts of the current monitoring programs will not

be helpful to regulators and planners, and we make proposals for

improvement, along with projected cost increases.

Background
The LACDPW has been monitoring stormwater since the early

1970s. In 1994, it began an improved program, which was designed

to determine total pollutant emissions to Santa Monica Bay and

determine land-use-specific discharges (Stenstrom and Strecker,

1993). Total emissions are estimated from flow-weighted composite

samples that are collected at five sampling stations (four stations are

required under the 1996 permit and one station remains from an

earlier permit.). These stations are ‘‘mass emission’’ stations in that

they were selected to sample the greatest runoff mass with the least

number of stations. The stations are equipped with flow-monitoring

equipment and operate unattended in secure facilities. Samples from

specific land uses are also required by the 1996 municipal permit

and are collected with composite samplers at engineered sampling

stations. A large suite of water-quality parameters is measured,

including indicator organisms, general minerals, nutrients, metals,

semivolatile organic compounds, and pesticides.

Additional monitoring is being conducted by other agencies to

satisfy regulations or for research. The California Department of

Transportation (Caltrans) has a large monitoring program for their

highways. Our laboratory has monitored three highway locations

near the University of California at Los Angeles (UCLA) (adjacent

to the 101 and 405 freeways) since 1999 (Stenstrom et al., 2000 and

2001). The study is also sponsored by Caltrans, and an extensive

suite of parameters is measured, including indicator bacteria,

general minerals, nutrients, metals, polycyclic aromatic hydro-

carbons, and oil and grease.

The previous programs monitor discharges to the bay, but there are

also programs that monitor coastal waters. The California Assembly

passed Bill 411(chapter 765 of Statutes of 1997; http://www.

swrcb.ca.gov/beach/bills/ab_411_bill_19971008_chaptered.pdf) to

address the problem of declining beach water quality and restore

confidence in beach swimming. Three types of indicators organisms

are monitored, and retesting in the event of an exceedence is also

required. The more restrictive procedures by the bill have increased

the frequency of beach postings and closures. The closure of

Huntington Beach in Orange County, California, during the summer

of 1999, was the first example of beach closures caused by the new

regulations (Grant et al., 2001; Orange County Sanitation District,

1999). Many organizations are monitoring the microbiological

water quality of Southern California coastal waters (Noble et al.,

2000).

An example of a new monitoring activity is the Industrial Activities

Stormwater General Permit, which mandates all industrial stormwater
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permittees to analyze stormwater samples, twice per year, for at least

four analytical parameters. The industries are classified by Standard

Industrial Classification (SIC) code (www.swrcb.ca.gov/rwqcb4/

html/programs/stormwater/sw_industrial.htmlreference). The moni-

tored analytical parameters are pH, total suspended solids (TSS),

specific conductance (SC), and total organic carbon (TOC). Oil and

grease (O&G) may be substituted for TOC. In addition, the permittees

must monitor any other pollutants, which they believe to be present in

their stormwater discharge as a result of industrial activity

(www.swrcb.ca.gov/stormwtr/docs/induspmt.doc). Permittees, in

some cases, may be required to sample at more than one location.

It is natural to ask if the monitoring programs are valuable. Is the

resulting water-quality database useful to planners and regulators to

identify acute problems, improve long-term water quality, and

understand land-use and water-quality relationships? An improved

understanding of the relationship of land use to stormwater quality

is an expected result, because land-use-specific sampling is required

by the NPDES permit. The original purposes of the monitoring

programs were to identify larger sources (e.g., ‘‘hot spots’’) and to

create a database to help develop total mass daily loads (TMDLs)

and other management tools. To answer this question, we reviewed

the current industrial stormwater permit program. We also comment

on other monitoring programs, and suggest improvements in

sampling strategies and water-quality-parameter selection, with

their anticipated cost increases.

Monitoring Program Utility
It is generally recognized that different human activities will

create different types and varying concentrations of stormwater

contaminants (Stenstrom et al., 1984). For example, runoff from

transportation-associated land use is a primary source of metals and

hydrocarbons (LACDPW and Woodward-Clyde, 1998). Vehicles

release hydrocarbons from leaks, engine byproducts and unburned

fuel, and various metals from corrosion, fuel combustion, and

wearing surfaces, such as brake pads (Rogge et al. 1993; Sansalone

and Buchberger, 1997). Differences in land-use patterns will likely

result in different pollutant concentrations, and, therefore, land-use-

related control strategies are essential to control stormwater pollu-

tion effectively.

Land-Use-Monitoring Data. The land-use-based program

administered by the LACDPW is a useful example. The land-use-

monitoring program, required by the 1996 Municipal Permit, was

examined to determine if different land uses produce different

stormwater quality. If the monitoring program is successful, land

uses should be identifiable from the collected data. We developed

a neural network approach to identify the various types of land use

(commercial, residential, industrial, transportation, and vacant) as

a function of stormwater-quality data (Ha and Stenstrom, 2003).

The neural model uses a Bayesian network, and was trained using

LACDPW data collected during 1996–2001 wet seasons. Among

approximately 90 water-quality parameters that were measured, 42

candidate parameters were initially selected because they were

detected in more than 25% of the storm events. We then selected the

top 10 most useful parameters for classifying the target land-use

classes using a discriminant analysis. The 10 water-quality

parameters are potassium, sulfate, alkalinity, dissolved phosphorus,

nitrite-N, total dissolved solids, volatile suspended solids, TSS,

dissolved copper, and dissolved zinc. The model was successful at

classifying 92% of the cases. The model was useful in that a data set

Table 1—Selected eight major industries and its case
number according to the different sets of input parameters
after clipping outliers for 1998–2001 seasons.

Major industries

SIC

code

Input parameters

pH, TSS,

SC, TOC,

and O&G

pH, TSS,

SC, and

O&G

Lead,

copper,

and Zinc

Food and kindred

products (FKP) 20 184 472 10

Chemical and allied

products (CAP) 28 305 850 35

Primary metal

industries (PMI) 33 144 773 100

Fabricated metal

products, except

machinery and

transportation

equipment (FMP) 34 417 1325 155

Transportation

equipment (TE) 37 193 601 187

Motor freight

transportation

and warehousing

(MFTW) 42 263 731 76

Electric, gas, and

sanitary services

(EGSS) 49 182 505 198

Wholesale trade-durable

goods (WT) 50 120 723 471

Number of total cases 1808 5980 1232

Figure 1—Activation map having 3 3 3 neurons obtained
by a Kohonen neural model, which was trained with four
input parameters (pH, TSS, SC, and O&G). The shading
intensity indicates the degree of similarity to their neighbor
nodes. Numbers indicate node in the Kohonen layer.
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could be manipulated by changing various water-quality parame-

ters, and the changes in classifications could be observed. It is also

possible to determine which parameters are most sensitive for the

classification and which are most active in a particular case. The

model will eventually be useful to automatically examine many

datasets to identify abnormally high or low parameters for a

particular land use and label these as opportunities for investigation

or improvement.

Industrial Stormwater Monitoring. Based on this experi-

ence, a similar approach was applied to the industrial stormwater

discharge data for the 1998–2001 wet seasons. This dataset contains

approximately 14 000 cases. Neural networks were trained to

differentiate between several industrial categories, based on SIC

code and water-quality data. It was hoped that the trained model

would be help to identify industrial ‘‘hot sources’’ or outliers. Eight

industrial categories were selected, based their prevalence in Los

Angeles County, which means some SIC codes have many more

cases than others. The selected eight industrial categories, and each

category’s case number for the three years, are shown in Table 1.

The data cases that contain both the mandatory water-quality

parameters (pH, TSS, SC, TOC, and O&G) and metals are limited.

Because of this reason, a neural model trained separately with the

water-quality data and metal data. Outliers in this study were

defined as the upper 2% of the whole range of the data set for each

parameter, and these cases were removed.

In this study, Neural Connection 2.1 (SPSS, Inc. and Recognition

Systems, Inc, Chicago, Illinois) was used to build the neural models.

Three supervised, feed-forward neural networks, namely, Multi-

Layer Perceptron, Radial Basis Function, and Bayesian Network

were used to differentiate the various types of industries. The neural

models were extensively trained with various architectures; however,

the performance of all models was very poor. This indicates a weak

or almost no relationship between the industrial categories based on

the SIC code and the available water-quality data.

To further seek a relationship between water-quality data and

various land uses of industries, an unsupervised Kohonen neural

network was used. The goal of Kohonen network is to map the

spatial relationships among clusters of data points into hyperdimen-

sional space (Aguilera et al., 2001). Once trained successfully, it

may be used to identify unknown data patterns, and it was hoped

that useful patterns between water quality and industrial categories

would be identified.

A Kohonen neural model with two dimensions in the Kohonen

layer was trained with different node sizes of 3 3 3, 5 3 5, and 7 3

7. The method performs square normalization, which normalizes the

original input data patterns to zero mean and unit variance. The

results were generally unsatisfactory, and it was difficult to make

a decision to cluster from the activation maps by the neural model.

Figure 2—Number of cases per node obtained by the
Kohonen neural model explained in Figure 1.

Figure 3—Overall process of producing an overall qualitative score with four parameters (shade area: a Kohonen
network having three nodes in the Kohonen layer was trained for each parameter).

Stenstrom and Lee
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Figure 1 shows an activation map having 3 3 3 neurons obtained by

a Kohonen model that was trained with four parameters: pH, TSS,

SC, and O&G. The shading intensity indicates the degree of

similarity to their neighbor nodes; lighter shades indicate similar

characteristics as the neighboring node, and darker patterns indicate

greater differences. There are two possible clusters. The first

contains nodes 1, 4, 5, and 7, and the second contains nodes 2, 3 and

6. Figure 2 shows the number of cases assigned to the various

nodes. Nodes 4 and 5 contain most of the cases, and the majority

(82%) would be assigned to the first cluster. A classification system

that assigns such a large fraction to a single cluster is not useful;

basically, the classification system is saying that it can find no

difference in the available water-quality parameters among the

majority of the SIC codes. Nodes 4 and 5 tend to have the lowest

pollutant concentrations, but the members are not distinguished by

SIC codes. Similar results were obtained using 5 3 5 or 7 3 7

neurons and with different set of input parameters. The conclusion

from this analysis is that stormwater quality is not distinguishable

by SIC code using the current water-quality parameters.

To further investigate possible relationships, the water-quality

data were transformed into a three-member fuzzy set with categories

of low, medium, and high. Each of the resulting data sets (except for

pH) was examined using a Kohonen neural model. Each model had

three nodes in the one-dimensional Kohonen layer and was trained

for each parameter separately. The output result of the model was

assigned a specific node number, from 1 to 3, for every case. The

nodes were reordered so that higher node numbers always indicated

greater pollutant concentration, with the number 3 representing the

highest pollutant concentration for each parameter. For the case of

pH, a qualitative score was assigned manually, based on deviation

from neutrality. An overall qualitative score was created by

summing the fuzzy states. Figure 3 shows the overall process. For

example, when we used four parameters, the possible minimum and

maximum overall qualitative score is 4 and 12, respectively, with 12

representing the worst water quality.

Figure 4 shows the distribution of the overall qualitative score for

the various types of industries with different sets of input param-

eters. The upper figure used all five water-quality parameters (pH,

TSS, SC, TOC, and O&G). The middle part shows the classifica-

tions when TOC is left out. The bottom shows the classification

using the metal analysis. In general, no distinguishing differences

were found among industrial categories and with different sets of

input parameters. The food and kindred product facilities have the

least abundance of low scores for the three different sets of input

parameters, suggesting that it has worse stormwater quality. When

five water-quality parameters were used (Figure 4, top), the whole-

sale trade-durable goods category had least abundance of small

scores, if scores up to 6 are considered.

In general, no distinguishing differences were found among

industrial categories for metals (Figure 4, bottom), if scores up to 4

are considered. However, it was necessary to remove more outliers

in lead and zinc concentrations for primary metal industries and

copper for transportation equipment industries than for other cate-

gories. This suggests that these two industries have the worst

stormwater quality, with respect to metals. The statistical signifi-

cance of these findings has not been evaluated, and it all likelihood,

a new or different method would need to be used.

The industrial data set was also examined to determine if a

seasonal first flush could be identified. Los Angeles has two distinct

rainfall seasons. The late spring to late fall or early winter is

generally dry. Most rainfall occurs in winter and early spring. This

rainfall pattern creates a long period for pollutant buildup, and the

first storm of the season generally has abnormally high pollutant

concentrations, which is called a seasonal first flush. The industrial

permit requires the first storm to be sampled and one later storm to

be sampled, which was required to identify the seasonal first flush.

To determine if the industrial stormwater monitoring program

was successful in identifying the seasonal first flush, the data (for

2000–2001 season only) were divided into first and second sample

datasets. In some cases, the first sample does not represent the first

rainfall event. In cases when there were more than two samples

collected, the later samples were ignored. Cases with only one

sample were also ignored. The first to second samples for the 2000–

2001 season are compared in Figure 5 using notched bar plots.

Figure 4—Distribution of the overall qualitative score for
each industrial category. Higher scores indicate low water
quality. Number of cases per category with different sets
of parameters was shown in Table 1 (top: five parameters
[pH, TSS, SC, TOC, and O&G] were used; middle: four
parameters [pH, TSS, SC, and O&G] were used; bottom:
three parameters [Pb, Cu, and Zn] were used).

Stenstrom and Lee
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Concentrations for all parameters were higher in the first sample

than the second sample by 0 to 120% for the median and 20 to 85%

for the mean. The TOC showed the greatest difference between first

and second samples; O&G showed the smallest difference.

Statistically significant differences can be observed in the notched

bar plot.

Beach Monitoring. Assembly Bill 411 created improved

beach water-quality-monitoring requirements. The improved mon-

itoring was mandated after an epidemiological study of Santa

Monica Bay swimmers suggested increased health risk associated

with swimming near storm drains (Haile et al., 1999). Daily samples

for total and fecal coliforms and enterococcus were mandated with

new, lower levels that trigger a beach posting or closure. Leecaster

and Weisberg (2001) examined sampling data from 24 sites in Los

Angeles County between 1995 and 1999. They report that over 70%

of the water-quality exceedences were for only one day.

The time required to analyze indicator organism data is generally

more than 24 hours. This created a chronology as follows:

(1) Day 1—a sample is collected and analysis begins.

(2) Day 2—the sample is analyzed and an exceedence is noted,

with a beach posting; a new sample is collected and analysis

begins.

(3) Day 3—the second sample result is negative 70% of the time,

and the beach posting is removed.

The chronology creates a situation that beaches are posted when

the samples do not exceed standards and open when they do.

Clearly, the problem is a monitoring program that cannot be

implemented with current technology. Rapid indicators are needed.

Furthermore, the utility of conventional indicator organisms for

fecal contamination in beach waters is in question.

Discussion and Recommendations
Three stormwater monitoring programs were discussed. The

land-use-monitoring program was generally successful and showed

the anticipated differences in water quality, based on land use. This

program used automatic, flow-weighted composite samplers with

trained personnel. The second program, the industrial-monitoring

program, used grab samples collected at various times for two

storms with SIC codes as land-use or industrial-use descriptors. The

program is generally unsuccessful in identifying relationships be-

tween water quality and land use. It was successful in showing a

seasonal first flush, and its utility for identifying acute problems is

questionable, based on outliers, to be discussed later. The third is

Figure 5—Comparison of first to second sample for the 2000–2001 wet season. All outliers are now shown. The ‘‘1’’ in
the x-axis indicates the first sample, and ‘‘2’’ indicates the second sample. Number in a parenthesis in x-axis indicates
number of cases.
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the beach water-quality-monitoring program, which uses grab sam-

ples and analyses that are not real-time. This creates problems of

beach postings, which are out of phase with exceedences.

In this section, we discuss possible reasons for less successful

program and suggest ways to improve monitoring. Some sugges-

tions will require new technology.

Sampling Method. For the industrial stormwater permit moni-

toring, grab samples are allowed, and facility operators are in-

structed to collect the sample during the first hour of discharge from

the first storm event for the wet season (October to May) and at least

one other storm event in the wet season. A grab sample is a discrete

sample taken within a short period of time, typically less than 15

minutes. Flow-weighted composite samples were collected in the

land-use program, which requires instrumentation and, perhaps, site

preparation to create a channel for flow measurement and security

for equipment. The flow-weighted samplers collect a composite by

combining a series of discrete samples of specific volume, collected

at specific flow-weighted intervals over the duration of a storm

event (LACDPW and Woodward-Clyde, 1998).

It is useful to compare the results of the two programs. They

are analogous in that both programs attempt to measure the

emissions from a particular human activity, although the industrial

program also attempts to identify high dischargers. The results of the

1998–2001 industrial permit using grab samples were compared to

the 1996–2001 land-use monitoring that used flow-weighted

composites. Figure 6 is a notched bar plot that shows the differences.

There are a large number of outliers among the grab samples and

only a few outliers among the composite samples. The number of

outliers suggests the need for a quality assurance program, and is

helpful in understanding why the neural networks could not identify

significant differences in stormwater from SIC codes.

The standard deviations of the concentrations are much lower

among the composite samples (Table 2). For example, the standard

deviation for TOC is 174 for grab samples and 9.7 for composite

samples, or a ratio of 18. The other parameters have ratios of

standard deviations from 2.3 (pH) to 66 (zinc). With this large

range of differences, one has to question to the utility of such

a monitoring program for any purpose. The application of any

normalization method of the original data is not useful to generalize

for use with a neural model. In addition, there are too many upper

and lower outliers in the data set, which results in excessive

clipping.

A flow-weighted composite sample for a storm event generally

better represents the storm event than a single grab sample, which

may be biased because of the collection time. The results of the

flow-weighted composite sample can be considered as an event

mean concentration (EMC), which can be multiplied by the flowrate

to calculate overall mass emissions. This is useful for spreadsheet

load models (Wong et al., 1997), which are finding widespread use

for planners and TMDL development.

A grab sample suffers from a variety of errors and biases, but one

that has not been fully explored is the effect of first flush. Many

parameters exhibit a first flush, which is typified by a declining

concentration from storm beginning to storm end (Ma et al., 2002a).

When the grab sample is collected early in the storm, it will be

higher than the EMC; conversely, if collected too late, it will be

lower than the EMC. The industrial-monitoring program suggests

collecting a sample within the first hour. To improve the results

from grab samples, it is necessary to find the best time to sample.

For example, the best time for sampling O&G from highway land

use is between two and three hours and is related to cumulative

rainfall and duration (Ma et al., 2002b). There might be some

improvement in the existing program with better definition of

collection times.

It is almost universally recognized that composite samplers

are better for stormwater monitoring; however, to collect a

flow-weighted composite sample, an automatic sampler must be

installed and operated properly before a storm event. It would be

a burden to all industrial permittees to construct composite sampling

facilities. Additionally, several water-quality parameters, such as

O&G and indicator bacteria, are not easily measured by a composite

sample.

Figure 6—Comparison of grab sample from the industrial stormwater discharge data during 1998–2001 to flow-weighted
composite sample from the land-use-monitoring data (industrial land use alone) during 1996–2001. The ‘‘G’’ in the x-axis
indicates a grab sample, and ‘‘C’’ indicates a composite sample. The number in parenthesis in the x-axis indicates the
number of cases.
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To improve sampling, it might be reasonable to randomly select

a small subset of industrial users for composite sampling. This

might be funded by fee permittees or by allowing a reduced number

of grab samples to be collected. A trained team would also increase

quality assurance to eliminate outliers. Such an approach might be

a better or less-expensive method of determining stormwater

emissions on receiving waters.

Parameter Selection. A variety of metal-related industries

are included among the SIC codes in the industrial monitoring

program. Many industries should be sources of metals, such as

chromium, copper, lead, nickel, and zinc (Woodward Clyde, 1992).

Figure 7 shows the mean concentration of the basic analytical

parameters and metals as a function of their industrial categories for

the 1998–2001 seasons. Outliers, defined earlier, have been

removed. The numbers of cases for all parameters vary with as

many as 800 for conventional parameters and only approximately

80 for metals. The conventional water-quality parameters show

much less relation to industrial category than metals. The mean

concentrations of lead, zinc, and nickel were highest for the primary

metal industries category, and copper was highest at the trans-

portation equipment facilities category. Mean concentrations of

O&G and TOC were highest for whole trade-durable good

industries and mean concentration of conductivity and sus-

pended solids were highest for electric, gas, and sanitary-service

facilities.

In addition, concentrations of metals exceeded the stormwater

benchmark values suggested by the U.S. Environmental Protection

Agency (U.S. EPA) more frequently than the basic water-quality

parameters (Table 3). The concentrations of metals (except nickel)

are mostly above the benchmark levels. For the cases of zinc,

approximately 90% of observations exceeded the benchmark.

The addition of metals to the basic permit’s requirement for basic

water-quality parameters would be a useful way of adding

information to the dataset. A neural model trained with both metals

and basic parameters will perform better than that trained with

existing water-quality parameters or metals alone. The addition of

metals will increase the monitoring cost. Table 4 shows the current

costs for laboratory analysis. The addition of metals to the permit

will approximately double or triple the laboratory costs. The cost of

collecting the samples should be quite similar. Cost increases are

probably inevitable, but this approach may be less expensive than

other approaches.

Table 2—Comparison of grab to composite sample (0
indicates level below detection limit).

Water-quality

parameters

Grab Industrial

stormwater permit

sample 1998–2001

Flow-weighted composite

Landuse monitoring

sample 1996–2001

(industrial site alone)

pH

Number 8584 51

Minimum 0.1 6.04

Maximum 12.7 8.32

Median 6.88 6.82

Mean 6.91 6.83

Standard deviation 0.96 0.41

Total suspended solids (mg/L)

Number 8424 49

Minimum 0 16

Maximum 101 000 1865

Median 48 140

Mean 219.11 232.55

Standard deviation 1693 298

Specific conductance (lmhos/cm)

Number 8297 47

Minimum 0.017 48.9

Maximum 71 000 691

Median 121 126

Mean 365.17 150.06

Standard deviation 1555 111

Oil and grease (mg/L)

Number 6685

Minimum 0

Maximum 6640

Median 5 Not analyzed

Mean 13.63

Standard deviation 95

Total organic carbon (mg/L)

Number 3404 50

Minimum 0 2.4

Maximum 3700 45.62

Median 18 9.85

Mean 56.01 12.67

Standard deviation 174 9.7

Lead (mg/L)

Number 171 Low detection

Minimum 0 frequency

Maximum 90

Median 0.06

Mean 0.402

Standard deviation 3.5

Copper (mg/L)

Number 1917 54

Minimum 0 0.0053

Maximum 49.5 0.99

Median 0.084 0.0185

Mean 0.337 0.047

Standard deviation 1.6 0.13

Zinc (mg/L)

Number 2917 54

Minimum 0 0.079

Maximum 2200 5.97

Median 0.6 0.36

Table 2—(Continued).

Water-quality

parameters

Grab Industrial

stormwater permit

sample 1998–2001

Flow-weighted composite

Landuse monitoring

sample 1996–2001

(industrial site alone)

Mean 4.86 0.63

Standard deviation 64.4 0.97

Nickel (mg/L)

Number 803 54

Minimum 0 0

Maximum 15.1 0.0804

Median 0.05 0.005995

Mean 0.196 0.0082

Standard deviation 0.76 0.013
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Figure 7—Distribution of the analytical parameters and metals for each industrial category. The number of cases is
varied.
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Conclusions
This paper has examined three stormwater monitoring programs.

The utility of the programs have been assessed based on the

programs’ ability to accurately estimate the emissions for different

classes of land uses and other obvious benefits. The following

conclusions are made:

(1) Data collected by grab samples had much higher variability

than composite samplers. The coefficients of variation (standard

deviation divided by the mean) for the same parameters were

generally 2 to 9 times higher for the grab samples. The vari-

ability suggests that composite samples should be collected,

even if it means a reduction in the total number of samples or

facilities that can be monitored.

(2) The time required to analyze a sample must be commensurate

with the intended use of the results. Beach water-quality

monitoring suffers from analysis time for indicator organisms.

The data suggests that 70% of the beach postings are out of

phase with the water-quality parameter exceedence.

(3) Metals are major pollutants in industrial land use and

potentially more useful to distinguish industrial categories or

land-use patterns. Metal concentrations frequently exceeded

U.S. EPA benchmark concentrations. Adding them to existing

permits might increase cost, but will add value to the resulting

monitoring database.

Managing stormwater is a developing technology and much

remains to be done. This paper has shown that, even with the limited

experience we have thus far, there are improvements that can be made.
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